VES PROTECTION PLATES KICK PLATES

Allegion is pioneering safety by protecting people where they live and work – and protecting our environment at the same time. We promote the health and safety of our employees, customers and local community members worldwide through our commitment to conducting business in a safe and environmentally responsible manner.

Additionally, Allegion recognizes the value of the Leadership in Energy and Environmental Design (LEED) rating system to building environmentally safe and sustainable structures. By using Life Cycle Assessment and Environmental Product Declarations, we aim to provide our customers with the information they need to make decisions regarding their own sustainable building concepts and green solutions.

At Allegion, we value the importance of a cleaner world and are committed to being a responsible member of our global communities.

Ives Protection Plates Kick Plates

According to ISO 14025

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. <u>Exclusions</u>: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically

address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. <u>Accuracy of Results</u>: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. <u>Comparability</u>: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment							
DECLARATION HOLDER	Allegion							
DECLARATION NUMBER	4787103471.114.1							
DECLARED PRODUCT	Ives Kickplates							
REFERENCE PCR	Product Category Rule (PCR) for pre (EPD) for Product Group, Builders H	eparing an Environmental Product Declaration ardware UL9004. Version: April 3rd, 2014.						
DATE OF ISSUE	April 3, 2017	pril 3, 2017						
PERIOD OF VALIDITY	5 Years	Years						
	Product definition and information about building physics							
	Information about basic material and the material's origin							
	Description of the product's manufac	ture						
	Indication of product processing							
DECLARATION	Information about the in-use condition	ns						
	Life cycle assessment results							
	Testing results and verifications							
The PCR review was conduct	ed by:	PCR Review Panel						
		epd@ulenvironment.com						
This declaration was independ 14025 by Underwriters Labora	dently verified in accordance with ISO atories	y B						
		Wade Stout, UL Environment						
This life cycle assessment wa accordance with ISO 14044 a	s independently verified in nd the reference PCR by:	Howard Sprin						
	-	Thomas P. Gloria, Industrial Ecology Consultants						

Ives Protection Plates Kick Plates

According to ISO 14025

Product Description

Company

Allegion is a global pioneer in safety and security, with leading brands like aptiQ®, LCN®, Schlage®, Steelcraft® and Von Duprin®. Focusing on security around the door and adjacent areas, Allegion produces a range of solutions for homes, businesses, schools and other institutions. Allegion is a \$2 billion company, with products sold in almost 130 countries.

As a subsidiary of Allegion plc, lves specializes in the manufacture and distribution of door hardware including architectural hinges, continuous hinges, door stops, floor stops, pull handles and plates, and door coordinators.

Product

Ives Protection Plates are available in a variety of sizes and finishes. The function of the product is to protect the door in areas where they are often hit. The categories of available products include kick plates, mop plates, stretcher plates and armor plates. Product categories differ in product size and/or where the product is installed on the door.

This EPD considers Kick Plates. Kick plates are installed at the bottom of the door to protect the bottom of the push side of doors subject to scuffing from foot traffic.

Because of the wide range of sizes available, this EPD presents a range of results based on the smallest and largest available sizes.

Specifically, the product is a specific product as an average from a single manufacturing plant.

The standard application is one protection plate per standard 3' x 7' door leaf. This EPD presents results for this application.

Product Characterization

The product is provided to the customer through a fax, phone, or online system. The product is shipped directly to customers in packaging material that includes a cardboard box, shipping labels and plastic materials. The amount of packaging materials is dependent on the size of the customer's order. No ancillary materials other than mounting screws are necessary for installation or use. Installation instructions and manuals are provided on-line.

Technical Information

Functional unit: One protection plate per standard 3' x 7' door leaf.

Application

Products are designed for commercial applications and fall under the product standard cateogry of ANSI/BHMA A156.6-2010.

Delivery Status

For shipping, each plate is placed in a cardboard box that runs the length of the plate. The plate is protected with a plastic sleeve.

Ives Protection Plates Kick Plates

According to ISO 14025

Base Materials

Table 1: Base Materials, Ives Protection Plate

*Base materials can include brass, stainless steel, aluminum and polyethylene. The results presented in this EPD are related to the stainless steel option since this is the most popular option purchased by customers. Results for other material options are available upon request.

Manufacture

Ives Protection Plates are manufactured by Allegion at their Tobey facility in Indianapolis, IN. Manufacturing includes pressing, cutting and finishing of stainless steel, aluminum, brass or plastic. Holes are then pressed out of the product so that screws can be used to fasten the product to the door. A surface finish is then applied to the product. Products are then boxed and palleted for shipping to Allegion customers.

Ives Protection Plates Kick Plates

According to ISO 14025

Environment and Health During Manufacturing

Allegion and Ives meet all federal and state standards related to the Environment and Health during manufacturing. Additionally, Ives suppliers employ a strict waste minimization and recycling program that reduces and recycles waste produced in the manufacturing process.

Beyond what is regulated, there are no additional environmental and health considerations during the production of goods.

Packaging

For shipping, each plate is placed in a cardboard box that runs the length of the plate. The plate is protected with a plastic sleeve.

Product Installation

In general, installation is achieved through the hand tightening of mounting screws.

Environment and Health During Use

There are no environmental or health considerations during the use of the product.

Re-use Stage

Ives products may be recycled or reused at the end of life. The LCA that this EPD is created from takes the conservative approach by assuming that all products are disposed of within the system boundary. However, potential recycling is calculated in *Module* D – *Benefits Beyond System Boundary*.

Disposal

It is assumed that all products are landfilled at the end of their life. The distance waste is transported to the landfill is assumed to be 100 miles.

Further Information

Additional information regarding Allegion's sustainability program and environmental legal complaince can be found at http://us.allegion.com/communities/architects/solutions/Pages/green.aspx

Ives Protection Plates Kick Plates

Life Cycle Assessment

Declared Unit

Name	Value (Standard Units. lbs.)	Value (Metric Units. Kg)		
Unit	1 plate	1 plate		
Weight per Declared Unit, excluding fasteners	0.96	.44		
Fasteners (pieces x weight/piece)	.08	.04		
Declared Unit	1.04	0.52		

. Table 2: Declared Unit. Small Plate

Table 3: Declared Unit. Large Plate

Name	Value (Standard Units. lbs.)	Value (Metric Units. Kg)		
Unit	1 plate	1 plate		
Weight per Declared Unit, excluding fasteners	4.06	1.84		
Fasteners (pieces x weight/piece)	.08	.04		
Declared Unit	4.14	1.88		

According to ISO 14025

Ives Protection Plates Kick Plates

According to ISO 14025

System Boundary

An LCA for products in which a functional life is not declared can be one of three options. These options include a Cradle to Shipping Gate LCA, a Cradle to Building LCA or a Cradle to Building-with EOL Stage LCA.

This particular LCA is a Cradle to Building-with EOL stage LCA.

A summary of the life cycle stages included in this LCA is presented in the following table.

Module Name	Description	Summary of Included Elements
A1	Product Stage: Raw Material Supply	Raw Material sourcing and processing as defined by secondary data.
A2	Product Stage: Transport	Shipping from supplier to manufacturing site. Fuel use requirements estimated based on product weights and mapped distance.
A3	Product Stage: Manufacturing	Energy, water and material inputs required for manufacturing gasketing and thresholds from raw materials. Packaging Materials included as well.
A4	Construction Process Stage: Transport	Shipping from manufacturing site to project site. Fuel use requirements estimated based on product weights and mapped distance.
A5	Construction Process Stage: Installation	Installation and packaging material waste.
B1	Use Stage: Use	Module Not Declared
B2	Use Stage: Maintenance	Module Not Declared
В3	Use Stage: Repair	Module Not Declared
B4	Use Stage: Replacement	Module Not Declared
B5	Use Stage: Refurbishment	Module Not Declared
B6	Use Stage: Operational Energy Use	Module Not Declared
В7	Use Stage: Operational Water Use	Module Not Declared
C1	EOL: Deconstruction	No inputs required for deconstruction.
C2	EOL: Transport	Shipping from project site to landfill. Fuel use requirements estimated based on product weight and estimated distance.
C3	EOL: Waste Processing	Module Not Declared
C4	EOL: Disposal	Assumes all products are sent to landfill. Landfill impacts modeled based on secondary data.
D	Benefits beyond system	Recycling benefits of metal parts.

Ives Protection Plates Kick Plates

According to ISO 14025

Estimates and Assumptions

<u>Recycled content</u> – Allegion products may contain recycled content, most notably recycled steel and aluminum, which are two of the most recycled materials throughout the globe. The specific amount of recycled content may vary based on the availability of materials to suppliers at the time of sourcing. Data sets sourced from GaBi include assumptions based on typical aluminum and steel recycled content and have been calculated based on expert evaluation and critical review. It was determined appropriate and a conservative approach to use default recycled content values in the GaBi aluminum and steel datasets.

Landfilling at End of Life – All products were considered to be landfilled at end of life. While recycling is an option, the choice of landfilling represents a conservative estimation of the end of life pathway in lieu of having actual verifiable data of end of life recycling.

Cut-off Criteria

All inputs in which data were available were included.

Material inputs greater than 1% (based on total mass of the individual components of the product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the declared unit.

List of excluded materials and energy inputs include:

- There were no excluded material and energy inputs in primary data.
- Some material and energy inputs may have been excluded within the GaBi datasets used for this project. All GaBi datasets have been critically reviewed and conform to the exclusion requirement of the PCR.

No hazardous and toxic releases, which are mandatory to be monitored and reported to the U.S TRI, are released from the facility.

Background Data

All background data was sourced from GaBi databases. GaBi version 6.4.1.20 was used to complete the assessment.

Ives Protection Plates Kick Plates

According to ISO 14025

Data Quality

Geographical Coverage

The geographical scope of the manufacturing portion of the life cycle is Indianapolis, IN. This LCA uses energy, natural resources and material inputs specific to this location. The geographic coverage of primary data is considered excellent.

The geographical scope of the raw material acquisition, customer distribution, site installation and use portions of the life cycle is global and based on the specific location of each supplier or customer. Locations and shipping distance values were determined through the analysis of purchasing and sales data using GIS mapping software. This data is considered very good.

Disposal and end-of-life geographic coverage (i.e. site of disposal location) are assumed to be 100 miles and based on research relating to the average distance an American lives from a landfill. This data is considered good.

Time Coverage

Primary data were provided by lves suppliers and represent calendar year 2015. Calendar year 2015 was the most recently completed 12-month period year at the beginning of the study. Using 2015 data meets the PCR requirement that manufacturer specific data be within the last 5 years. Time coverage of this data is considered good.

Data necessary to model cradle-to-gate unit processes was sourced from thinkstep LCI datasets. Time coverage of the GaBi datasets varies from approximately 2009 to present. All datasets rely on at least one 1-year average data. Overall time coverage of the datasets is considered good and meets the requirement of the PCR that all data be updated within a 10-year period. The specific time coverage of secondary datasets can be referenced in the dataset references table in each supplemental LCA report.

Technological Coverage

Primary data provided by Allegion is specific to the technology that the company uses in manufacturing their product. It is site specific and considered of good quality. It is worth noting that the energy and water used in manufacturing the product includes overhead energy such as lighting, heating and sanitary use of water. Sub-metering was not available to extract process only energy and water use from the total energy use. Sub-metering would improve the technological coverage of data quality.

Data necessary to model cradle-to-gate unit processes was sourced from thinkStep LCI datasets. Technological coverage of the datasets is considered good relative to the actual supply chain of Allegion. While improved life cycle data from suppliers would improve technological coverage, the use of lower quality generic datasets does meet the goal of this LCA.

Allocation Procedures

General principles of allocation were based on ISO14040/44. Where possible, allocation was avoided. When allocation was necessary it was done on a physical mass basis.

Ives Protection Plates Kick Plates

According to ISO 14025

LCA Results – Kick Plate, Small

The following tables disclose the life cycle results for lves Protection Plates. Impact categories were determined through reference to the BHMA Product Category Rules for Builder Hardware (UL9004).

TRACI 2.1 – Kick Plate, Small

	Results of the LCA - Environmental Impact, TRACI 2.1											
Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D		
Global Warming Air, incl. biogenic carbon	[kg CO2- Equiv.]	3.48E+00	1.38E-01	2.78E-01	MND	0.00E+00	1.23E-02	MND	2.16E-01	-1.19E+00		
Ozone Depletion Air	[kg CFC 11- Equiv.]	2.56E-07	1.21E-12	2.87E-13	MND	0.00E+00	1.08E-13	MND	3.27E-13	1.86E-08		
Acidification	[kg SO2- Equiv.]	4.10E-02	5.54E-04	9.40E-04	MND	0.00E+00	4.94E-05	MND	1.40E-03	-4.87E-03		
Eutrophication	[kg N- Equiv.]	5.40E-03	4.72E-05	1.93E-04	MND	0.00E+00	4.21E-06	MND	5.42E-04	-7.91E-05		
Smog Air	[kg O3- Equiv.]	2.47E-01	1.81E-02	4.37E-03	MND	0.00E+00	1.61E-03	MND	3.84E-03	-4.36E-02		
Abiotic Depletion for fossil resources	[MJ surplus energy]	3.99E+00	2.61E-01	4.06E-02	MND	0.00E+00	2.33E-02	MND	4.20E-02	-5.75E-01		

CML 2001-April 2013 – Kick Plates, Small

	Results of the LCA - Environmental Impact, CML2001 - Apr. 2013											
Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D		
Global Warming Potential	[kg CO2- Equiv.]	3.48E+00	1.38E-01	3.00E-01	MND	0.00E+00	1.23E-02	MND	2.33E-01	-1.20E+00		
Ozone Layer Depletion Potential	[kg R11- Equiv.]	2.35E-07	1.14E-12	2.70E-13	MND	0.00E+00	1.02E-13	MND	3.08E-13	1.71E-08		
Acidification Potential	[kg SO2- Equiv.]	4.55E-02	4.14E-04	5.80E-04	MND	0.00E+00	3.85E-06	MND	1.45E-04	-4.93E-04		
Eutrophicati on Potential	[kg Phosphat e-Equiv.]	1.69E-03	1.12E-04	2.52E-04	MND	0.00E+00	9.97E-06	MND	3.27E-01	-1.29E+01		
Photochem. Ozone Creation Potential	[kg Ethene- Equiv.]	3.15E-03	4.31E-05	1.57E-04	MND	0.00E+00	1.74E-01	MND	3.36E-01	-1.27E+01		
Abiotic Depletion	[kg Sb- Equiv.]	2.60E-04	2.35E-08	7.37E-09	MND	0.00E+00	4.32E-03	MND	2.30E-02	-2.61E+00		
Abiotic Depletion for fossil resources	[MJ surplus energy]	4.23E+01	1.94E+00	3.13E-01	MND	0.00E+00	1.73E-01	MND	3.27E-01	-1.29E+01		

Ives Protection Plates Kick Plates

According to ISO 14025

Resource Use – Kick Plates, Small

	Results of the LCA - Resource Use												
Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D			
PERE	MJ, net calorific value	2.45E+01	4.84E-02	1.91E-02	MND	0.00E+00	4.32E-03	MND	2.30E-02	-2.61E+00			
PERM	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00			
PERT	MJ, net calorific value	2.45E+01	4.84E-02	1.91E-02	MND	0.00E+00	4.32E-03	MND	2.30E-02	-2.61E+00			
PENRE	MJ, net calorific value	5.23E+01	1.95E+00	3.20E-01	MND	0.00E+00	1.74E-01	MND	3.36E-01	-1.27E+01			
PENRM	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00			
PENRT	MJ, net calorific value	5.23E+01	1.95E+00	3.20E-01	MND	0.00E+00	1.74E-01	MND	3.36E-01	-1.27E+01			
SM	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00			
RSF	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00			
NRSF	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00			
FW	M ³	1.77E-03	3.47E-06	7.09E-06	MND	0.00E+00	2.46E-07	MND	4.71E-06	-1.36E-03			

		Key	
PERE	Use of renewable primary energy excluding renewable primary energy resources used as raw materials	PENRT	Total use of non renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PERM	Use of renewable primary energy resources used as raw materials	SM	Use of secondary materials
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	RSF	Use of renewable secondary fuels
PENRE	Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials	NRSF	Use of non renewable secondary fuels
PENRM	Use of non renewable primary energy resources used as raw materials	FW	Net use of fresh water

Environmental Product Declaration

Ives Protection Plates Kick Plates

According to ISO 14025

Outputs and Waste – Kick Plates, Small

	Results of the LCA - Waste and Output Flows													
					B1-									
Parameter	Unit	A1-A3	A4	A5	B7	C1	C2	C3	C4	D				
HWD	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00				
NHWD	Kg	1.50E+01	1.96E-02	3.06E-01	MND	0.00E+00	1.75E-03	MND	4.46E-01	-3.54E+00				
RWD	Kg	3.61E-04	4.27E-06	2.69E-06	MND	0.00E+00	-3.81E-07	MND	-3.36E-06	-4.15E-05				
CRU	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00				
MFR	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00				
MET	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00				
EEE	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00				
EET	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00				

	Кеу										
HWD	Disposed-of-hazardous waste	MFR	Materials for recycling								
NHWD	Disposed-of non-hazardous waste	MET	Materials for energy recovery								
RWD	Disposed-of Radioactive waste	EEE	Exported electrical energy								
CRU	Components for reuse	EET	Exported thermal energy								

Ives Protection Plates Kick Plates

According to ISO 14025

LCA Results – Kick Plates, Large

The following tables disclose the life cycle results for lves Protection Plates. Impact categories were determined through reference to the BHMA Product Category Rules for Builder Hardware (UL9004).

TRACI 2.1 – Kick Plates, Large

	Results of the LCA - Environmental Impact, TRACI 2.1											
Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D		
Global Warming Air, incl. biogenic carbon	[kg CO2- Equiv.]	3.80E+01	1.51E+00	3.03E+00	MND	0.00E+00	1.35E-01	MND	2.37E+00	-1.31E+01		
Ozone Depletion Air	[kg CFC 11- Equiv.]	2.79E-06	1.33E-11	3.13E-12	MND	0.00E+00	1.19E-12	MND	3.58E-12	2.04E-07		
Acidification	[kg SO2- Equiv.]	4.48E-01	6.05E-03	1.03E-02	MND	0.00E+00	5.41E-04	MND	1.53E-02	-5.34E-02		
Eutrophication	[kg N- Equiv.]	5.90E-02	5.15E-04	2.11E-03	MND	0.00E+00	4.61E-05	MND	5.94E-03	-8.67E-04		
Smog Air	[kg O3- Equiv.]	2.70E+00	1.98E-01	4.76E-02	MND	0.00E+00	1.77E-02	MND	4.21E-02	-4.78E-01		
Abiotic Depletion for fossil resources	[MJ surplus energy]	4.36E+01	2.85E+00	4.40E-01	MND	0.00E+00	2.55E-01	MND	4.61E-01	-6.30E+00		

CML 2001-April 2013 – Kick Plates, Large

	Results of the LCA - Environmental Impact, CML2001 - Apr. 2013											
Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D		
Global Warming Potential	[kg CO2- Equiv.]	3.80E+01	1.51E+00	3.27E+00	MND	0.00E+00	1.35E-01	MND	2.56E+00	-1.31E+01		
Ozone Layer Depletion Potential	[kg R11- Equiv.]	2.56E-06	1.25E-11	2.94E-12	MND	0.00E+00	1.12E-12	MND	3.37E-12	1.87E-07		
Acidification Potential	[kg SO2- Equiv.]	4.97E-01	4.53E-03	6.33E-03	MND	0.00E+00	4.22E-05	MND	1.59E-03	-5.40E-03		
Eutrophicati on Potential	[kg Phosphat e-Equiv.]	1.85E-02	1.22E-03	2.75E-03	MND	0.00E+00	1.09E-04	MND	3.59E+00	-2.38E-03		
Photochem. Ozone Creation Potential	[kg Ethene- Equiv.]	3.44E-02	4.71E-04	1.72E-03	MND	0.00E+00	1.91E+00	MND	3.68E+00	-1.39E+02		
Abiotic Depletion	[kg Sb- Equiv.]	2.84E-03	2.57E-07	8.01E-08	MND	0.00E+00	4.73E-02	MND	2.52E-01	-2.86E+01		
Abiotic Depletion for fossil resources	[MJ surplus energy]	4.63E+02	2.12E+01	3.40E+00	MND	0.00E+00	1.90E+00	MND	3.59E+00	-1.42E+02		

Ives Protection Plates Kick Plates

According to ISO 14025

Resource Use – Kick Plates, Large

Results of the LCA - Resource Use										
Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
PERE	MJ, net calorific value	2.68E+02	5.29E-01	2.07E-01	MND	0.00E+00	4.73E-02	MND	2.52E-01	-2.86E+01
PERM	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
PERT	MJ, net calorific value	2.68E+02	5.29E-01	2.07E-01	MND	0.00E+00	4.73E-02	MND	2.52E-01	-2.86E+01
PENRE	MJ, net calorific value	5.72E+02	2.13E+01	3.47E+00	MND	0.00E+00	1.91E+00	MND	3.68E+00	-1.39E+02
PENRM	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
PENRT	MJ, net calorific value	5.72E+02	2.13E+01	3.47E+00	MND	0.00E+00	1.91E+00	MND	3.68E+00	-1.39E+02
SM	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
RSF	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
NRSF	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
FW	M ³	6.46E-03	1.66E-05	4.60E-05	MND	0.00E+00	8.73E-07	MND	1.67E-05	-4.83E-03

Кеу							
PERE	Use of renewable primary energy excluding renewable primary energy resources used as raw materials	PENRT	Total use of non renewable primary energy resources (primary energy and primary energy resources used as raw materials)				
PERM	Use of renewable primary energy resources used as raw materials	SM	Use of secondary materials				
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	RSF	Use of renewable secondary fuels				
PENRE	Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials	NRSF	Use of non renewable secondary fuels				
PENRM	Use of non renewable primary energy resources used as raw materials	FW	Net use of fresh water				

Ives Protection Plates Kick Plates

According to ISO 14025

Outputs and Waste – Kick Plates, Large

Results of the LCA - Waste and Output Flows										
Parameter	Unit	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
HWD	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
NHWD	Kg	1.64E+02	2.14E-01	3.31E+00	MND	0.00E+00	1.92E-02	MND	4.89E+00	-3.88E+01
RWD	Kg	3.94E-03	4.67E-05	2.91E-05	MND	0.00E+00	-4.18E-06	MND	-3.68E-05	-4.54E-04
CRU	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
MFR	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
MET	Kg	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
EEE	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00
EET	MJ, net calorific value	0.00E+00	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00	MND	0.00E+00	0.00E+00

Кеу							
HWD	Disposed-of-hazardous waste	MFR	Materials for recycling				
NHWD	Disposed-of non-hazardous waste	MET	Materials for energy recovery				
RWD	Disposed-of Radioactive waste	EEE	Exported electrical energy				
CRU	Components for reuse	EET	Exported thermal energy				

Ives Protection Plates Kick Plates

According to ISO 14025

Comparability of EPDs

Results presented in this EPD are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins, or risks.

Results are not intended to be used to determine superiority of one product over another.

Environmental declarations from different programs may not be comparable.

Life Cycle Assessment Interpretation

A Dominance Analysis evaluates each life cycle stage and compares the impacts from that stage to the sum of the impacts calculated for all declared modules. A Dominance Analysis was completed for the TRACI and CML results. Module D was excluded from the Dominance Analysis.

The dominance analysis shows that the Production Stage (A1-A3) of the life cycle is responsible for the majority of impacts (70-99%, on average) across all impact categories. A1-A3 includes the extraction, processing and sourcing of all materials. The manufacturing phase (A5) is the second most impactful stage.

It is important to note that data quality may have an impact on the results of an LCA. Overall data quality is considered good. Improvements can be made through the modification of datasets to incorporate more regional specificity, both in terms of energy and technology. Additionally, the extrusion of both metals and plastics were treated using a generic dataset linked to region specific energy, water and waste data. Utilizing Allegion-specific upstream data provided by suppliers would lead to improvement in data quality. However, the data used in this assessment was considered appropriate in relation to the goal, scope and budget of the project.

References

- Life Cycle Assessment, Allegion, Core LCA Report for Product Groups Under BHMA PCR. WAP Sustainability Consulting. Oct. 2015.
- 2. Life Cycle Assessment, Ives, Supplemental LCA Report for Ives Flat Goods. WAP Sustainability Consulting. Oct. 2016.
- Product Category Rule (PCR) for preparing an Environmental Product Declaration (EPD) for Product Group, Builders Hardware UL9004. Version: April 3rd, 2014.
- 4. ISO 14044: 2006 Environmental Management Life cycle assessment Requirements and Guidelines.
- 5. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and Procedures.

