Securitron M680E with EcoMag Technology®

Magnalock

ASSA ABLOY

ASSA ABLOY is committed to providing products and services that are environmentally sound throughout the entire production process and the product lifecycle. Our unconditional aim is to make sustainability a central part of our business philosophy and culture, but even more important is the job of integrating sustainability into our business strategy. The employment of EPDs will help architects, designers and LEED-APs select environmentally preferable door openings.

ASSA ABLOY will continue our efforts to protect the environment and health of our customers/end users and will utilize the EPD as one means to document those efforts.

The Securitron M680E with EcoMag technology delivers the same unsurpassed intelligence, style and convenience as the previous M680 series, but with up to 80% reduction in energy consumption.

Securitron M680E with EcoMag Technology®

Door Hardware

According to ISO 14025

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment				
DECLARATION HOLDER	ASSA ABLOY/ Securitron				
DECLARATION NUMBER					
DECLARED PRODUCT	Securitron M680E with EcoMag Tech	nology®			
REFERENCE PCR	Builders Hardware PCR UL 9004				
DATE OF ISSUE	March 15, 2018				
PERIOD OF VALIDITY	5 Years				
	Product definition and information about	out building physics			
	Information about basic material and the material's origin				
CONTENTS OF THE	Description of the product's manufacturing				
DECLARATION	Indication of product processing				
DEGE/WATTON	Information about the in-use conditions				
	Life cycle assessment results				
	Testing results and verifications				
The PCR review was conducted by		The Independent Expert Committee, SVR			
This declaration was independently by Underwriters Laboratories	verified in accordance with ISO 14025				
INTERNAL	EXTERNAL	UL Environment			
This life cycle assessment was inde ISO 14044 and the reference PCR	ependently verified in accordance with by				

¹ Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds, e.g., Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

Securitron M680E with EcoMag Technology®

Door Hardware

Product Definition and Information

Product Description

Product name: Securitron M680E with EcoMag Technology®

Product characteristic: Magnalock

The Securitron M680E with EcoMag is a powerful, energy efficient maglock. Additional features include:

- Strike plate mounting template provides the easiest install for out-swing doors
- LED Indicator shows the lock is secure, open, or has an incomplete bond as well as error codes for troubleshooting
- Tamper Switch sends an alarm output if the cover is removed and is selectable to NO or NC
- BondSTAT and integrated Door Position Switch
- Autosensing dual voltage with microprocessor technology
- Adjustable automatic relock timer (0 to 30 seconds)
- Wire chamber anti-tamper switch
- Energy efficient, low power usage
- Size optimized for use with door closers
- MagnaCare® lifetime replacement, no fault warranty

Application

The Securitron M680E with EcoMag Technology® is ideal for a wide range of applications, including but not limited to:

- High security applications
- Fail safe, high traffic exits
- Stairwells, vestibules, or other interior or protected perimeter outswing doors
- Commercial, retail, healthcare, education, and government institutions
- Aesthetically demanding installations like museums and galleries
- Short doorways where maglock protrusion is a concern

Technical Data

For the declared product, the following technical data in the delivery status must be provided with reference to the test standard:

	Technical Data					
Length	11.5"					
Depth	2.5625"					
Height	2.5"					
Holding Force	1200 lbs (544 kg)					
Finish	Multiple Finishes					

Placing on the Market / Application Rules

The standards that can be applied for the Securitron M680E with EcoMag Technology® are:

- UL 10C Fire Rated 1 Hour
- CAN/ULC-S104 Fire Door Conformant
- UL 1034 Burglary-Resistant Listed
- UL 294 Recognized Component
- ANSI/BHMA A156.23, Grade 2; E18501
- Car State Fire Marshall Listed

Securitron M680E with EcoMag Technology®

Door Hardware

Delivery Status

Shipments of Securitron M680E products are delivered in a 17 x 4 x 6" cardboard box. All necessary installation hardware and instructions are included.

Base Materials / Ancilary Materials

Material	Percentage in mass (%)
Stainless Steel	<1%
Steel	77%
Aluminum	16%
Electronics/Mechanics	1%
Plastics	2%
Other	4%
Total	100.00%

Manufacture

The primary manufacturing processes are made by Tier 1 suppliers and the final manufacturing processes occur in Phoenix, AZ. The components come from processes like stamped steel, turning, and aluminum extrusion.

Environmental and Health During Manufacturing

ASSA ABLOY is committed to producing and distributing door opening solutions with minimal environmental impact, where health & safety is the primary focus for all employees and associates.

- Environmental operations, GHG, energy, water, waste, VOC, surface treatment and H&S are being routinely monitored. Inspections, audits, and reviews are conducted periodically to ensure that applicable standards are met and environment management program effectiveness is evaluated.
- Code of Conduct covers human rights, labor practices and decent work. Management of ASSA ABLOY is aware of their environmental roles and responsibilities, providing appropriate training, supporting accountability and recognizing outstanding performance.
- Any waste metals during machining are separated and recycled. The waste from the water-based painting process is delivered to waste treatment plant.
- The factory in Phoenix, AZ have certification of Environmental Management to ISO 14001:2004 and Occupational Health and Safety to OHSAS 18001:2007.

Product Processing / Installation

Securitron M680E products are distributed through and installed by trained installation technicians, such as locksmiths, carpenters etc. adhering to local/national standards and requirements.

Packaging

Shipments of Securitron products are delivered in a cardboard box with cornstarch foam inserts. The foam packaging material is a biobased cornstarch material that is fully biodegradable and compostable according to ASTM D-6400.

Material	Quantity (% By Weight)
Cardboard	93%
Cornstarch Foam	7%
Total	100%

Securitron M680E with EcoMag Technology®

Door Hardware

Conditions of Use

No cleaning or annual maintenance is required.

Environmental and Health During Use

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product.

Reference Service Life

The reference service life is 20 years

Extraordinary Effects

Fire

No negative environmental impact will result from exposure to fire.

Water

Contains no substances that have any impact on water in case of flood.

Mechanical Destruction

No danger to the environment can be anticipated during mechanical destruction.

Re-use Phase

The product can be moved from one door to another during the reference service life, thus enabling re-use.

Disposal

The product can be mechanically dissembled to separate the different materials. 100% of the materials used are recyclable. The remainder of components are disposed of according to standard municipal solid waste deposition.

Further Information

ASSA ABLOY Electromechanical Specialties & OEM Group 10027 S. 51st Street, Ste. 102 Phoenix, AZ 85044

Life Cycle Assessment

Declared Unit

The declaration refers to the functional unit of 1 unit (or piece) of Securitron M680E with EcoMag Technology®, as specified in the Builders Hardware PCR

Name	Value	Unit
Declared unit	1	Magnalock
Mass	4.590	kg
Conversion factor to 1 kg	0.218	-

Securitron M680E with EcoMag Technology®

Door Hardware

According to ISO 14025

System Boundary

This is a cradle to gate with options Environmental Product Declaration. The following life cycle phases were considered:

Pr	oduct S	tage		truction ss Stage	Use Stage End of Life Stage*					Benefits and Loads Beyond the System Boundaries						
Raw material	Transport	Manufacturing	Transport from gate to the site	Construction/ installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction /demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	Χ	Χ	Χ	X

Description of the System Boundary Stages Corresponding to the PCR (X = Included; MND = Module Not Declared)

Estimates and Assumptions

End of Life

In the End of Life phase, for all the materials which can be recycled, a recycling scenario with 100% collection rate was assumed.

Cut-off Criteria

In the assessment, all available data from the production process are considered, i.e. all raw materials used, auxiliary materials (e.g. lubricants), thermal energy consumption and electric power consumption - including material and energy flows contributing less than 1% of mass or energy (if available). In case a specific flow contributing less than 1% in mass or energy is not available, worst case assumption proxies are selected to represent the respective environmental impacts. Impacts relating to the production of machines and facilities required during production are out of the scope of this assessment.

Background data

For life cycle modeling of the considered products, the GaBi 8 Software System for Life Cycle Engineering, developed by thinkstep, is used. The GaBi-database contains consistent and documented datasets which are documented in the online GaBi-documentation. To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

Data Quality

The data sources used are complete and representative of North America in terms of the geographic and technological coverage and are a recent vintage (i.e. less than ten years old). The data used for primary data are based on direct information sources of the manufacturer. Secondary data sets were used for raw materials extraction and processing, end of life, transportation, and energy production flows. Wherever secondary data is used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty.

^{*}This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

Securitron M680E with EcoMag Technology®

Door Hardware

According to ISO 14025

Period Under Review

The period under review is the full calendar year of 2017.

Allocation

Allocation was determined on a per unit basis.

Comparability

A comparison or an evaluation of EPD data is only possible if all data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account. Environmental delarations from different programs may not be comparable. Full conformance with the PCR for North American Builders Hardware products allows EPD comparability only when all stages of a Builders Hardware product's life cycle have been considered. However, variations and deviations are possible.

LCA: Modeling Scenarios and Additional Technical Information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared.

Installation into the building (A5)							
Name	Value	Unit					
Auxiliary	-	kg					
Water consumption	-	m^3					
Other resources	-	kg					
Electricity consumption	-	kWh					
Other energy carriers	-	MJ					
Material loss	-	kg					
Output substance following waste treatment on-site	0.27	kg					
Dust in the air	-	kg					
VOC in the air	-	kg					

Reference Service Life							
Name	Value	Unit					
Reference Service Life	20	years					

End of life (C1-C4)								
Name	Value	Unit						
Collected separately	4.59	kg						
Collected as mixed construction waste	0.00	kg						
Reuse	0.00	kg						
Recycling	3.41	kg						
Energy recovery	0.24	kg						
Landfilling	0.94	kg						

LCA Results

Results shown below were calculated using TRACI 2.1 Methodology.

TRACI 2.1 I	TRACI 2.1 Impact Assessment									
Parameter	Parameter	Unit	A1-A3	A4	A5	C2	C3	C4	D	
GWP	Global warming potential	kg CO ₂ -Eq.	1.7E+01	3.4E-01	4.9E-02	2.1E-02	3.1E-03	5.6E-03	-5.3E+00	
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.9E-09	1.3E-11	1.1E-13	8.1E-13	1.1E-13	6.6E-15	1.8E-07	
AP Air	Acidification potential for air emissions	kg SO ₂ -Eq.	7.7E-02	2.0E-03	2.8E-04	1.3E-04	1.9E-05	2.6E-05	-1.3E-02	
EP	Eutrophication potential	kg N-Eq.	3.6E-03	1.1E-04	4.8E-05	7.1E-06	9.0E-07	9.5E-06	-9.9E-05	
SP	Smog formation potential	kg O₃-Eq.	9.2E-01	5.6E-02	2.6E-03	3.5E-03	4.5E-04	1.0E-04	-1.2E-01	
FFD	Fossil Fuel Depletion	MJ-surplus	1.3E+01	6.0E-01	1.6E-02	3.8E-02	5.0E-03	8.5E-04	6.3E-01	

Securitron M680E with EcoMag Technology®

Door Hardware

According to ISO 14025

Results shown below were calculated using CML 2001 - April 2013 Methodology.

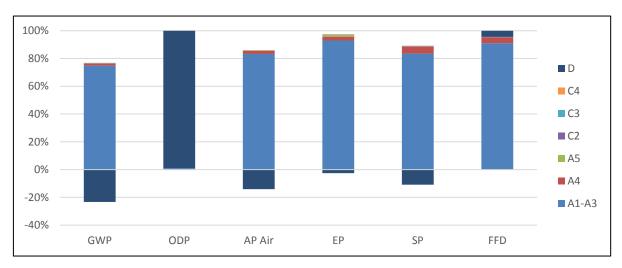
CML 4.1 I	ML 4.1 Impact Assessment										
Parameter	Parameter	Unit	A1-A3	A4	A5	C2	C3	C4	D		
GWP	Global warming potential	kg CO ₂ -Eq.	1.6E+01	3.4E-01	3.1E-01	2.1E-02	3.1E-03	6.4E-03	-5.3E+00		
ODP	Depletion potential of the stratospheric ozone layer	kg CFC-11 Eq.	1.8E-09	1.3E-11	1.1E-13	8.0E-13	1.0E-13	6.2E-15	1.6E-07		
AP Air	Acidification potential for air emissions	kg SO₂-Eq.	7.8E-02	1.7E-03	1.8E-04	1.1E-04	1.6E-05	9.9E-06	-1.2E-02		
EP	Eutrophication potential	$kg(PO_4)^3$ -Eq.	6.0E-03	3.0E-04	6.7E-05	1.9E-05	2.4E-06	1.1E-05	-3.6E-04		
POCP	Formation potential of tropospheric ozone photochemical oxidants	kg ethane-Eq.	7.0E-03	2.0E-04	3.9E-05	1.2E-05	1.9E-06	2.6E-06	-2.6E-03		
ADPE	Abiotic depletion potential for non- fossil resources	kg Sb-Eq.	1.8E-04	1.4E-10	9.5E-09	8.8E-12	5.3E-12	2.7E-10	-5.3E-05		
ADPF	Abiotic depletion potential for fossil resources	MJ	2.0E+02	4.3E+00	1.4E-01	2.7E-01	3.9E-02	6.8E-03	-5.6E+01		

Results below contain the resource use throughout the life cycle of the product.

Resource U	Resource Use									
Parameter	Parameter	Unit	A1-A3	A4	A5	C2	C3	C4	D	
PERE	Renewable primary energy as energy carrier	MJ	3.8E+01	0.0E+00	1.8E-02	0.0E+00	0.0E+00	5.7E-04	2.8E+00	
PERM	Renewable primary energy resources as material utilization	MJ	5.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
PERT	Total use of renewable primary energy resources	MJ	4.3E+01	0.0E+00	1.8E-02	0.0E+00	0.0E+00	5.7E-04	2.8E+00	
PENRE	Nonrenewable primary energy as energy carrier	MJ	2.1E+02	4.3E+00	1.5E-01	2.7E-01	4.1E-02	7.1E-03	-5.0E+01	
PENRM	Nonrenewable primary energy as material utilization	MJ	5.2E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	
PENRT	Total use of nonrenewable primary energy resources	MJ	2.2E+02	4.3E+00	1.5E-01	2.7E-01	4.1E-02	7.1E-03	-5.0E+01	
SM	Use of secondary material	MJ	0.0E+00							
RSF	Use of renewable secondary fuels	MJ	0.0E+00							
NRSF	Use of nonrenewable secondary fuels	MJ	0.0E+00							
FW	Use of net fresh water	m ³	3.0E+01	0.0E+00	9.5E-03	0.0E+00	0.0E+00	3.1E-04	-1.1E-02	

Securitron M680E with EcoMag Technology®

Door Hardware



According to ISO 14025

Results below contain the output flows and wastes throughout the life cycle of the product.

Output Flows and Waste Categories									
Parameter	Parameter	Unit	A1-A3	A4	A5	C2	C3	C4	D
HWD	Hazardous waste disposed	kg	5.2E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	-2.7E-03
NHWD	Non-hazardous waste disposed	kg	3.2E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.3E-01
RWD	Radioactive waste disposed	kg	3.4E-03	0.0E+00	3.6E-06	0.0E+00	0.0E+00	1.2E-07	1.7E-03
CRU	Components for re-use	kg	0.0E+00						
MFR	Materials for recycling	kg	7.3E-01	0.0E+00	2.7E-01	0.0E+00	3.0E-02	0.0E+00	2.6E-02
MER	Materials for energy recovery	kg	0.0E+00						
EEE	Exported electrical energy	MJ	0.0E+00						
EEE	Exported thermal energy	MJ	1.4E-07	0.0E+00	2.6E-01	0.0E+00	0.0E+00	2.0E-03	0.0E+00

The production life cycle stage (A1-A3) dominates the impacts across all impact categories, with the exception of ozone depletion. This is due to the upstream production of metals used in the product, along with electricity use in the manufacturing of the product. Potential benefits are due to the potential avoided burden of recycled materials after disposal.

Securitron M680E with EcoMag Technology®

Door Hardware

According to ISO 14025

References

-	PCR Part A	UL Environment and Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. July 2014, version 1.3
-	PCR Part B	UL Environment and Institut Bauen und Umwelt e.V. (IBU). Product Category Rules Part B: Requirements on the Environmental Product Declaration for Builders Hardware
-	GaBi 6	thinkstep.one: GaBi Software-System and Databases for Life Cycle Engineering. version 6.110. Copyright, TM. Stuttgart, Echterdingen. 1992-2015
-	ISO 14025	ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.
-	ISO 14040	ISO 14040:2009-11, Environmental management — Life cycle assessment — Principles and framework.
-	ISO 14044	ISO 14044:2006-10, Environmental management — Life cycle assessment — Requirements and guidelines.
-	EN 15804	EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction product
-	ULE 2013	UL Environment, General Program Instructions, 2013.
-	TRACI 2.1	US EPA, Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI)
-	CML 2001	Center of Environmental Science of Leiden University impact categories and characterisation methods for impact assessment (CML)

